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ABSTRACT 
 
Hydrolyzer is a commonly found unit operation in oleochemical industry. Control of 
hydrolyzer has to be done carefully since efficiency in the control of this unit will affect the 
yield of the process. At present conventional controllers such as PI and PID have been used 
to achieve the setpoint especially under presence of disturbances. In this study, neural 
network have been applied as an alternative to cope with the dynamics behavior of the 
hydrolyzer. Two types of control strategies namely, direct inverse controller (DIC) and 
internal model controller (IMC) were implemented in the control system. Two sets of data 
were used to develop the DIC and IMC. The controllers were evaluated on the ability to 
track set-points, load disturbance and noise disturbance test and the IMC was found to be 
the most versatile controller. 
 
Keywords: Hydrolyzer, Process Control, Artificial Neural Network, Direct Inverse 
Controller, Internal Model Controller. 
 
INTRODUCTION 
 
Nowadays, continuous counter-current splitting process has been a common application in 
oleochemical industry to hydrolyze oil. Fat-splitting or hydrolysis is the process of 
decomposing fats into acids and glycerol by subjecting them in the presence of water to 
high temperature and corresponding pressure. This system involves counter flow of oil and 
water (as reactants), where reaction and mass transfer occur at the same time. 
 
Figure 1 gives an overall view to describe the hydrolyzer. Water is fed in excess from the 
top while tryglyceride is fed from the bottom of the splitter. Fatty acids and glycerol are the 
reaction products. Fatty acids will flow upwards and discharge at the top at the splitter. 
Glycerol will dissolve in water and discharge as glycerol-water at the bottom of the splitter. 
 
Operating a hydrolyzer can be difficult especially when temperature of the reactants 
fluctuate.  This problem occurs due to insufficient energy supply to heat up the reactant 
before entering the hydrolyzer. Changes in reactant flow rate to meet production demand 
also cause the process temperature to be unstable. In order to maintain the process 
temperature, steam is introduced into the system at top and bottom of the hydrolyzer. At 
present, conventional controllers such as PI and PID controllers have been used to control 
the process temperature. However, the action by the conventional controllers is not able to 
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achieve the desired set-point especially under the presence of noise disturbances. 
Consequently, low quality of final product was produce and can be consider a loss in the 
oleochemical industry.   
 
In recent years, an active interest in the development and application of nonlinear control 
methodologies has emerged. Upsurge in research on neural networks, had made it readily 
available as an attractive method for identifying nonlinear processes (Hussain, 1999). Most 
model-based control strategies made use of nonlinear black-box techniques to model the 
relationship between process input and output variables. This presents of advantage of 
bypassing the complexity and the uncertainty of physical systems (Chen et al, 2004).  
 
In this study, the neural network based controllers were used to manipulate the steam rates 
for both, the top and bottom of the column to control the temperature of the hydrolyzer. 
Two types of control strategies namely, Direct Inverse Controller (DIC) and Internal Model 
Controller (IMC) had been studied and applied to the system. The performances of the 
controllers were evaluated based on its ability to cope with setpoint tracking test, 
disturbance rejection test and noise disturbance test. In addition, the stability of the output 
responses of the controllers also had been evaluated as unstable responses will cause valve 
failure leading to production loss. 
 

 
                Fig. 1:  Model of a Hydrolyzer 

 
 

NEURAL NETWORK 
 
In human brain, neurons within nervous system interact in a complex fashion. Human 
senses detect stimuli and send this information to brain via neurons. Within the brain, other 
neurons are excited and they interact with each other. Based on the input, the brain reaches 

Fig. 2: General Neural Network 
Architecture 
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a conclusion and sends an output in the form of an answer or response. Main function of 
input layer is to receive information from an external source and passes this information to 
the network. This information will be processed in the hidden layer. Then, processed 
information will be sent to the output layer. Finally, output layer transmit the result to 
external receptor. Figure 2 shows the general architecture for the neural network. 
Interconnection between layers of each neurons associate with network weights. From the 
modeling point of view, these weights are analogous to model parameters which regulate 
the influence of each variable on overall model performance. Thus, network weights serve 
as a measure for connection strength that controls the influence of each incoming signal to 
the recipient neuron. 

 
Neural Network Model Development 
 
In order to develop an accurate neural network model, sufficient data are required. Thus, 
the training of the input-output signals acquired in an open loop and the control signals was 
generated in a pseudo-random function. For this study, a mathematical model had been 
developed to generate data to train the network. Three sets of data were generated to 
develop neural-network based controllers. 
 
Generally, development of a neural network consists of 3 stages. The first stage involved 
training of the network which was most time consuming. The network accomplished this 
mapping by first learning from a series of past examples defining sets of input and output 
corresponding for the given system. In the second stage, a set of input data introduced to 
the network for testing. The network then applied what it had learned to a new input pattern 
to predict the appropriate output (Barrati, 1997; Dirion, 1996).  The output generated will 
be compared with the actual output. Once an acceptable error was obtained, another new set 
of data was introduced to the network in the final stage for validation. Objective of the last 
stage was to ensure the reliability of the network to simulate the require output. 
 
Inverse model based controllers 
 
Two types of controllers are used for the study, i.e. internal model control (IMC) and Direct 
Inverse Controller (DIC).  The DIC strategy consists of neural network inverse model that 
act as a controller placed in series with the process under control (Daosaud et al., 2005). In 
this scheme, the desired set-point acts as the desired output which is fed to the network 
together  with the past plant inputs and outputs to predict the desired current system input 
(Hussain, 1999). Since the control of temperature in a hydrolyzer involves control of the 
steam rate injected into the top and bottom of the system, two neural networks will be 
applied in the system as controllers.  
 
Neural network based IMC incorporate both forward and inverse model in the control 
scheme. The forward model which represents the dynamic of the process placed in parallel 
with the system to cater for plant or model mismatches during implementation. On the 
other hand, the inverse model will act as a controller. In this scheme the error between the 
plant output and the neural network forward model is substrated from the set-point before 
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being fed into the inverse model (Hussain, 1999).  With the mismatch detection feature, the 
internal-model based controller can be used to drive the controlled parameter to desired set-
point when noise disturbance introduce into the system. As two controllers are required, 
two IMC systems are needed to be developed. The details can be seen in (Hussain and 
Kershenbaum, 2000). 
 
The neural inverse models had a 10-9-1 and 8-5-1 structure for the top and bottom control 
system respectively. 
 
SIMULATION RESULTS 
 
Main objective of this simulation study is to maintain the optimum process condition within 
the hydrolyzer. Steam rate at the top and bottom need to be manipulate in order to achieve 
this objective.  
 
Set-Point Tracking Test 
 
During start-up and shut-down operation of the hydrolyzer, the temperatures are required to 
change slowly. Drastic temperature changes may cause thermal shock scenario, where 
cracking of construction material may occur and become a safety issue in the plant. Hence, 
the temperature step change would be the best practice during start-up and shut-down of the 
system.  
 
In the set point tracking study, the controller was subjected to several set point changes. 
First, the temperature was reduced from 250oC to 120oC which reflected the shut-down 
scenario of the system. Then, the temperature was increased from 120oC to 250o

 

C, which 
represented the start-up scenario of the hydrolyzer. This set point tracking test applied to 
DIC and IMC designed for this system. Set-point tracking test was also applied on the 
conventional controller in order to compare the performance with the neural network based 
controller.  

Figure 3 shows the response at the top of the hydrolyzer for the set-point tracking test. The 
controllers relatively generated the low overshoot and offset value through out the test. 
However, in term of control of steam flow rate, the DIC was better than the PID and IMC 
controller since the DIC generated lower fluctuation rate. In Figure 4, the set-point tracking 
on the bottom temperature also shows the similar scenario, where all the controllers were 
capable to trace the desired set-point and the DIC generated more stable control of steam 
flow rate. With stable action by the DIC, the maintenance for the valve is expected to 
reduce significantly and effectively reduce the shutdown time of the plant. From the 
stability point of view, the DIC was more superior followed by the IMC and PID.  
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Fig. 3: Set-Point Tracking for the Top of the Hydrolyzer 

 

 
Fig. 4: Set-Point Tracking for the Bottom of the Hydrolyzer 
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Rejection Disturbance Test 
 
In a hydrolyzer, the top and bottom temperatures will fluctuate due to the presence of 
process disturbances. The process disturbances include the changes in water temperature 
and water flow rate. Each of the test started at steady state condition and the state variable 
started to change at time = 1 min. The controllers were implemented into the system after 
the disturbance introduced into the system for 167 minutes. For the rejection disturbance 
test, the water temperature changed from 80oC to 92o

 

C at time = 1 min. The values of other 
state variables remained the same throughout this test.  

Figure 5 shows the performance of the controllers to control the hydrolyzer top 
temperature. When the PID implemented into the system, the temperature was able return 
to the set-point with minor overshoot and fluctuation. High fluctuation rate was observed at 
the steam flow rate control. In contrast the, DIC and IMC were able to control top 
temperature to the desired set-point with low fluctuation rate of steam flow rate. 

 
The change of water temperature did not affect the bottom temperature significantly. Figure 
6 shows that the controllers were able to bring the temperature to desired set-point with 
minor complication. As the test concluded, both DIC and IMC were found to generate 
lower fluctuation rate compared to the PID. 
 

 
 

Fig. 5: Results for Disturbance Test (Top Temperature) 
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Fig. 6: Results for Disturbance Test (Bottom Temperature) 
 

 

Fig. 7: Results for Noise Disturbance Test (Top Temperature) 
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Figure 7 shows the results for rejection of disturbance under noisy data, showing the IMC 

being most capable of handling the noise. 

 
CONCLUSIONS 

 
Based on evaluation the controller performance, the IMC and DIC have showed their 
ability in set point tracking and can be used as the control system during the start-up and 
shut-down of the hydrolyzer. Taking into consideration of the stability of the output signal, 
the response generated by the IMC is preferred as the output signal generated to control the 
steam flow rate is more stable and could minimize the failure of the steam control valve. 
The IMC was also able to cater for the noise disturbance and generated stable output signal 
compared to the PID and DIC. In conclusion, IMC was a more versatile controller since it 
capable of coping with set-point tracking, load disturbances and noise disturbance test. 
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