
- 45 -

A Component-Based Reverse
Engineering Approach: Decomposing
Web Pages to Facilitate Maintenance

and Reusability
Thiam K. Chiew, Karen V. Renaud

Abstract — Web page creation has become even easier with the emergence of many different authoring tools.
Unfortunately, these authoring tools do not guarantee that the design is effective or that the resulting web pages are usable
and perform well. With more Web pages being designed and implemented by novices, Web page maintenance has become
more difficult. Furthermore, pressure to deploy Web applications within a short time has led to pages being published without
first undergoing thorough testing. Consequently, such pages are more likely to be modified and refined frequently after
deployment. Moreover, the heterogeneous operational platform and environment of Web-based applications, as well as
diversified user base of the applications, inevitably poses unpredicted new requirements after deployment. Therefore, the
maintenance of Web pages needs to be carried out more frequently and rapidly as compared to traditional software
maintenance. This research proposes a reverse engineering framework that can be used to facilitate and ease maintenance
of Web pages. Existing Web pages are decomposed into different types of components to facilitate systematic examination.
A proof-of-concept prototype tool was developed to assess the feasibility of the proposal. Initial evaluation has delivered
encouraging results.

Index Terms — Maintenance, Reusability, Reverse engineering, Web page

—————————— � ——————————

1 INTRODUCTION

oftware maintenance is the process of
evolving a system after it has been
delivered, in order to correct coding,

design, or specification errors, or to
accommodate new requirements, by means of
modifying existing system components or
adding new components to the system.
However, maintenance is normally perceived
as a second-class activity to development [1].

Hence maintenance of Web applications
does not receive enough attention. Pressure
to deploy Web applications within a short time
has led to applications that still have actual
development tasks outstanding, ostensibly to
be carried out during the operation and
maintenance phase after deployment [2].

Even with well planned and engineered
Web applications, the heterogeneous
operational platform and environment of the
application, as well as the diversified user
base, inevitably poses unprecedented new
requirements after deployment. The

requirements may come as immediate
feedback soon after the application is
launched. This is due to the fact that Web
applications themselves can serve as a
communication channel between the
developer and end-users. Once an application
has been launched, end-users can provide
feedback about the application via emails,
online feedback forms, or discussion forums.
The feedback may well include suggestions
for improvement or request additional
functionality. Therefore, Web application
maintenance needs to be carried out more
frequently and rapidly as compared to
traditional software maintenance. In fact, the
distinction between development and
maintenance of Web applications has, over
time, become blurred.

Apart from maintaining Web sites in
response to the users’ feedback and to correct
errors, Web sites also need to be maintained
to keep the content up-to-date and accurate,
by adding or updating database tables, for
example. Technology improvement is another
factor that drives the maintenance efforts. It is
reasonable to conclude that maintenance of
Web sites is driven and motivated by diverse
factors which make it inevitable rather than
optional.

This paper proposes a new approach to
Web maintenance. Most existing Web

S

————————————————

� T.K. Chiew is with the Faculty of Computer Science and
Information Technology, University of Malaya, Malaysia.
E-mail: tkchiew@um.edu.my.

� K.V. Renaud is with the Department of Computing
Science, University of Glasgow, Scotland. E-mail:
karen@dcs.gla.ac.uk.

CHIEW & RENAUD: A COMPONENT-BASED REVERSE ENGINEERING APPROACH: DECOMPOSING WEB PAGES TO FACILITATE
MAINTENANCE AND REUSABILITY

- 46 -

maintenance approaches focus on
maintaining of Web sites as a whole, here we
argue for an approach that maintains Web
pages as individual entities using a
component-based reverse engineering
approach. The approach views Web pages as
being composed of distinct components that
can be isolated and extracted from the Web
pages to be scrutinised for maintenance
purposes.

The main types of components that make
up a Web page were identified by studying
existing Web technologies and reviewing
related literature. A prototype tool was then
built to demonstrate the feasibility of the
proposed maintenance approach.

Section 2 of this paper reviews existing
approaches to Web maintenance. Section 3
outlines the rationale for the component-
based approach. Section 4 presents the five
identified Web page components. Section 5
describes a prototype tool that was built to
facilitate examination of database queries in
Web pages to support maintenance activities.
This is followed by a section that presents and
discusses the results obtained from using the
prototype tool for examining database queries
in five Web pages. Section 7 concludes.

2 EXISTING APPROACHES TO WEB
MAINTENANCE

There are some existing tools based on
established software engineering methods
that help to ensure the correctness of the site
structure. For example, Sciascio et al. [3]
used a symbolic model checking technique, a
formal method, to verify structure models of
Web sites against their specifications
expressed in a logical language [3].

Reverse software engineering is a widely
used technique to help building maintenance
tools for Web sites. Martin and Martin [4]
describe a tool that parses HTML documents
and Web server log files to construct and
visualise the structure of a Web site as a
graph. Ricca and Tonella [5] developed a tool
called ReWeb which analyses a Web site and
models its structure as a graph, as well as
tracking the site’s evolution to discover
changes that may degrade its original
structure. Chung and Lee [6] also reverse-
engineered Web sites using the Unified
Process and visual models with Unified
Modelling Language (UML) to understand
their navigation schemes and physical
structures.

It is obvious that most existing tools adopt a
macro approach and focus on the
maintenance of Web sites as a whole, rather

than focusing on maintenance of individual
Web pages as entities. Maintenance of Web
pages requires a more focused approach,
something more intelligent than mere editorial
assistance such as that which is provided by
tools such as HTML parsers which check the
correctness of the code, or human-computer
interaction tools that examine the pages’
graphical design, validity of hyperlinks in the
pages, and other related usability aspects.

A component-based maintenance approach
can support maintenance of Web pages, but
also promotes reusability of components that
make up a Web page. In this paper, a
component is defined as: “any Web page
element that has a clear role and can be
isolated, and can be replaced with a different
component with equivalent functionality”. This
definition is adapted from [7: 311].

3 WHY A COMPONENT-BASED APPROACH?

Modifying and updating Web pages, as well
as changing their graphical designs, are
classic Web maintenance tasks. Capilla and
Duenas [8] proposed a re-engineering
approach that involves Web file comparison,
code inspection, and manual examination of
Web files’ graphical views to identify common
and variable aspects of existing Web sites.
The common and variable aspects are then
used to construct a product-line that reveals
the site’s architecture. This assists in the
development of new Web sites and the
maintenance of existing Web sites. Even
though the study focused on the maintenance
of Web sites more than Web pages, it
proposes the decomposition of Web pages
into different components. The components
include different parts of HTML code including
tables, JavaScript functions, database code
including PHP and Active Server Pages (ASP)
functions, and other modules including XML
files.

Viewing a Web page as a group of
components has the advantage of
modularising the page for ease of
understanding. It is common to use different
technologies in the creation of a single Web
page. These could include markup languages
(HTML, XML, etc), client-side scripting
languages (JavaScript, VBScript, etc), and
server-side programming languages that
support dynamic creation of the page (ASP,
PHP, etc).

Each of these technologies serves
different purposes. HTML describes the
structure and layout of the page; client-side
scripting language provides additional
functionality to the page such as producing

IASK PROCEEDINGS

- 47 -

pop-up or drop-down menus, and performs
form validation before form data are sent to
the server for processing; server-side
programming languages are useful typically
for reinforcing business logics and supporting
database functions and keeping page content
current.

As a result, the page comprises a mixture
of different codes. Code of one type may be
embedded within code of another type,
making them difficult to comprehend. For a
Web page comprising different codes, one of
the ways to enhance comprehension is to
isolate the code chunks into different
components based on the technologies and/or
functionality.

4 THE FIVE WEB PAGE COMPONENTS

By studying existing Web technologies and
reviewing related literature, five main types of
Web page components had been identified:

1. Page structure and layout, described
using HTML and cascading style
sheets (CSS).

2. Page content, including text, images,
multimedia elements, and hyperlinks.

3. Additional functionality provided by
scripting languages, e.g. JavaScript, or
other Web development techniques,
e.g. Ajax.

4. Business and application logics
reinforced by languages such as PHP,
JSP, and ASP.

5. Database functionality supported by
languages such as SQL, PHP, JSP,
and ASP.

This categorisation corresponds to
Padmanabharao’s [9] view of a Web site as
consisting of two main parts: “the front end
that the user interacts with, and everything
else that includes business components and
data repositories that power the Web site”.
Page structure and layout, content, and
additional functionality correspond to the first
part, while business and application logics,
and database functions correspond to the
second part. The modularised component-
based view of a Web page is illustrated in Fig.
1 using UML-like notations.

Fig. 1. Modularised Component-based View of a Web
Page.

Each of the components delineates
different aspects of a Web page. For example,
a typical HTML Web form for user registration
can be described by specifying its features
from the perspective of the five components,
as shown in Table 1.

By viewing a Web site as being composed
of some or all of these components, it is
possible to reverse-engineer an existing Web
page. Each component can then be
scrutinised individually for maintenance
purposes or to identify possibilities for
reusability.

Based on the study carried out by Linos et
al. [10], “there is a worldwide tendency for
Web sites to accumulate large numbers of
stale (more than 6 months) documents
(HTML, plain text, and image files) over long
periods of time”. This is a challenge to the
maintenance of Web sites and the Web pages
they host. Reverse engineering, supported by
the component-based approach outlined
above, provides a consistent yet
comprehensive way of understanding existing
but inadequately documented Web pages. As
a result, Web pages with similar or
overlapping content can be consolidated;
outdated Web pages can be removed; orphan
pages and broken links can be identified; user
interfaces can be made consistent; business
and application logic can be enhanced;
undocumented database table structure can
be unveiled; and old, but not obsolete, data
can be retrieved. The steps are useful to
deliver a better user experience when
browsing the Web site.

TABLE 1

SPECIFYING AN HTML WEB FORM FOR USER
REGISTRATION AS COMPONENTS

Component Specification
Structure and
Layout

Top to bottom flow layout.

Content Logo of the company (image) and
instructions for filling in the form
(text).

Additional
Functionality

JavaScript to validate data
entered to the form before
submitting the form.

Business and
Application Logics

Ensure no replication of user
name.

Database
Functions

Store user data to the database
or populate particular fields of the
form for the user.

5 A PROTOTYPE TOOL

In order to assess the feasibility of the
proposed component-based reverse
engineering approach, a proof-of-concept
prototype tool was developed using Java. The
tool takes a Web page as input and then

CHIEW & RENAUD: A COMPONENT-BASED REVERSE ENGINEERING APPROACH: DECOMPOSING WEB PAGES TO FACILITATE
MAINTENANCE AND REUSABILITY

- 48 -

extracts and analyses database functions
within the page to determine whether the
functions are formulated to behave efficiently.
Similar tools can be built to support
examination of the other page components if
sets of best-practice guidelines are identified
for the implementation of the components.
The database component was chosen instead
of others because of its well-defined purpose
(management of data), and limited yet
straightforward activities (select, insert,
update, delete, etc), which allow a higher level
of automation to be achieved more easily.

Another point worth mentioning is that
application of such a tool depends on the
language or technology that the Web page
uses. The reason for this is that automated
code examination can only be done on the
basis of encoding the syntax and rules of the
implementation code, which is language and
technology dependent. The tool discussed
here was developed for the examination of
Web pages written in ColdFusion Markup
Language (CFML)1, a scripting language
similar to HTML that uses tags. The use of
tags in CFML, in turn, supports the automation
of the tool.

The examination of Web pages focuses on
the SQL (Structured Query Language) queries
performed using SELECT statements, each of
which retrieve data from databases. The
purpose of the examination is to determine
whether all the data retrieved are indeed
used, in other words, that the retrieval of the
data is necessary.

6 RESULTS AND DISCUSSION

Five CFML Web pages were taken from a
Web site supporting the needs of a community
church and examined using the prototype tool.
After that, the results of examination were
compared with results from a manual
inspection to determine whether the tool was
able to identify the following aspects:

1. Number of query statements, together
with the query names and data
sources.

2. Data fields retrieved.
3. For each data field retrieved, its

number of occurrences and the
location of each occurrence in the
page.

Table 2 shows the overall comparison
between inspections done manually and using
the tool. LOC refers to “lines of code” while
“queries and data fields’ occurrences” refers
to the occurrences of query names with select

1 http://www.adobe.com/products/coldfusion/

… from SQL statements and data fields
retrieved by those queries.

The comparison demonstrates that the
maintenance tool was indeed able to identify
the number of queries in the page examined
and to determine how many among them
contain select … from SQL statements.
However, the tool is not yet able to track the
occurrences of query names and data fields
accurately for two reasons.

First of all, the tool only differentiates
between comments and other code in the
page. The page content and CFML code are
treated equally. Therefore, if the page
contains words or characters that are identical
to the query names or data fields identified,
those occurrences in the page content will be
counted as well. As a result, the tool will show
more occurrences of query names and data
fields than manual inspection. This is
exhibited in the inspections of Page A. The
problem can be solved by extracting only
CFML code from the page before the
inspection is done.

TABLE 2

COMPARISON BETWEEN AUTOMATED AND MANUAL
INSPECTIONS OF CFML WEB PAGES

Page LOC Attributes Automated Manual

No. of Query 12 12
No. of Query
with select …
from

3 3

Page
A

146
Queries and
Data Fields’
Occurrences

12 7

No. of Query 11 11
No. of Query
with select …
from

4 4

Page
B

161
Queries and
Data Fields’
Occurrences

8 8

No. of Query 3 3
No. of Query
with select …
from

3 3

Page
C 224

Queries and
Data Fields’
Occurrences

8 12

No. of Query 7 7
No. of Query
with select …
from

7 7

Page
D

500
Queries and
Data Fields’
Occurrences

19 37

No. of Query 17 17
No. of Query
with select …
from

15 15

Page
E

571
Queries and
Data Fields’
Occurrences

66 83

Secondly, the tool is not aware of the scope

of the data fields. When a data field is

IASK PROCEEDINGS

- 49 -

referenced without being qualified by the
query name, i.e. the data field is preceded by
the query name followed by a period (.), the
tool does not recognise its occurrence. For
example, when the data fields are referenced
within a <CFLOOP> statement. The
consequence is exhibited in the inspections of
Pages C, D, and E. To solve the problem, a
more complicated syntactic analyser is
required to make the tool aware of the context
of the CFML code and the scope of the
variables used.

Regardless of the limitations, the tool still
demonstrates a way of supporting the Web
page maintenance tasks, particularly in
inspecting database queries involved in
creating the page. For example, inspection on
Page E using the tool has discovered that the
creation of the page involves 17 database
queries, which will probably have a negative
impact on the page’s performance in terms of
response time. Based on the report generated
from the tool, a more in-depth manual
inspection was carried out to examine the
page. It was found that most data retrieved
were either not used or retrieved more data
than was used.

With the support of the tool, weaknesses in
the design of database queries in Page E,
which has 571 LOC, were discovered easily
and quickly. Therefore the tool is a useful aid
in facilitating the Web site maintenance
process.

7 CONCLUSION

Maintenance is an essential part of the
software life cycle. It is also challenging if the
software to be maintained is not properly
documented, which makes it difficult to
understand. This is especially the case for
Web sites because of the ease of changing
individual pages to correct faults in the
system, without the need for any documentary
evidence. Understanding software is a task
that needs to be carried out in the early
stages of the maintenance process to ensure
correctness and effectiveness of
maintenance. This paper described a
component-based approach that could help
maintenance staff to understand Web pages
in a systematic way. The approach
decomposes a Web page into five possible
components, which include structure and
layout, content, additional functionality,
application and business logics, and database
functions. This approach also suggests the
possibility of being able to reverse engineer
existing Web pages into different components.

Tools can be built to examine and analyse

each of these different components. A proof-
of-concept prototype tool that examines
database queries in ColdFusion Web pages
was developed and presented in this paper.
The tool checks whether the embedded
queries are formulated and used effectively
and efficiently. The tool was able to produce a
result that is similar to that achieved by the
more time-consuming manual inspection, but
clearly takes less time and effort, especially
when complex and lengthy pages need to be
maintained.

REFERENCES

[1] I. Sommerville, Software Engineering, 8th Ed, Essex:
Pearson Education, 2007.

[2] A. Ebner, B. Proll, and H. Werthner, Operation and
“Maintenance of Web Applications,” Web Engineering,
G. Kappel, B. Proll, S. Reich & W. Retschitzegger,
eds., Heidelberg: John Wiley & Sons, pp. 155-170,
2006.

[3] E. Sciascio, D. Donini, F. M. Mongiello, and G.
Piscitelli, “Web Applications Design and Maintenance
Using Symbolic Model Checking,” Proc. 7th European
Conference on Software Maintenance, pp. 63-72,
2003.

[4] J. Martin, J., and L. Martin, L., “Web Site Maintenance
with Software-Engineering Tools,” Proc. 3rd
International Workshop on Web Site Evolution, 2001.

[5] F. Ricca, and P. Tonella, “Web Site Analysis:
Structure and Evolution,” Proc. International
Conference on Software Maintenance, 2000.

[6] S. Chung, and Y.S. Lee, “Reverse Software
Engineering with UML for Web Site Maintenance,”
Proc. 1st International Conference on Web
Information Systems, 2000.

[7] T. C. Lethbridge, and R. Laganiere, Object-Oriented
Software Engineering: Practical Software
Development using UML and Java, 2nd Ed, Berkshire:
McGraw Hill, 2004.

[8] Capilla, and J. C. Duenas, "Light-weight Product-Lines
for Evolution and Maintenance of Web Sites," Proc.
7th European Conference on Software Maintenance
and Reengineering, 2003.

[9] S. Padmanabharao, “Improving User Experience
through Improved Web Design and Database
Performance,” High-Performance Web Databases:
Design, Development, and Deployment, S. Purba,
eds., Boca Raton: Auerbach Publications, pp. 623-
630, 2001.

[10] P. K. Linos, E. T. Ososanya, and H. Natarajan,
“Maintenance Support for Web Sites: A Case Study,”
Proc. 3rd International Workshop on Web Site
Evolution, 2001.

Thiam K. Chiew Obtained both his bachelor and masters
degrees in computer science from the University of Malaya in
1998 and 2000, respectively. He received his PhD degree in
computing science from the University of Glasgow in 2009.
He is now a lecturer at the Faculty of Computer Science and
Information Technology, University of Malaya, Malaysia. He is
also the review process coordinator and secretary for
Malaysian Journal of Computer Science.

Karen V. Renaud obtained her Honours degree from the
University of Pretoria and her Masters degree from the
University of South Africa. She received her PhD degree from
the University of Glasgow in 2000. She is currently a Senior
lecturer in the Computing Science department of the
University of Glasgow.

