Pleurotus ostreatus spent mushroom compost as green biosorbent for nickel (II) biosorption

Tay, C.C. and Liew, H.H. and Redzwan, Ghufran and Yong, S.K. and Surif, S. and Abdul-Talib, S. (2011) Pleurotus ostreatus spent mushroom compost as green biosorbent for nickel (II) biosorption. Water Science and Technology, 64 (12). pp. 2425-2432. ISSN 0273-1223, DOI https://doi.org/10.2166/wst.2011.805.

[img] PDF
00002645_71005.pdf
Restricted to Repository staff only

Download (299kB) | Request a copy
Official URL: https://doi.org/10.2166/wst.2011.805

Abstract

The potential of Pleurotus ostreatus spent mushroom compost (PSMC) as a green biosorbent for nickel (II) biosorption was investigated in this study. A novel approach of using the half-saturation concentration of biosorbent to rapidly determine the uptake, kinetics and mechanism of biosorption was employed together with cost per unit uptake analysis to determine the potential of this biosorbent. Fifty per cent nickel (II) biosorption was obtained at a half-saturation constant of 0.7 g biosorbent concentration, initial pH in the range of 4–8, 10 min contact time, 50 mL 50 mg/L nickel (II) initial concentration. The experimental data were well fitted with the Langmuir isotherm model and the maximum nickel (II) biosorption was 3.04 mg/g. The results corresponded well to a second pseudo order kinetic model with the coefficient of determination value of 0.9999. Based on FTIR analysis, the general alkyl, hydroxyl or amino, aliphatic alcohol and carbonyl functional groups of biosorbent were involved in the biosorption process. Therefore, biosorption of nickel (II) must involve several mechanisms simultaneously such as physical adsorption, chemisorption and ion exchange. Cost comparison for PSMC with Amberlite IRC-86 ion exchange resin indicates that the biosorbent has the potential to be developed into a cost effective and environmentally friendly treatment system.

Item Type: Article
Funders: UNSPECIFIED
Uncontrolled Keywords: biosorbent; Biosorption; Half-saturation concentration; Nickel (II); Pleurotus ostreatus spent mushroom compost
Subjects: Q Science > Q Science (General)
Divisions: Faculty of Science > Institute of Biological Sciences
Depositing User: Ms. Wati Yusuf
Date Deposited: 16 Jun 2014 09:17
Last Modified: 26 Sep 2019 07:58
URI: http://eprints.um.edu.my/id/eprint/10573

Actions (login required)

View Item View Item