Minimal Residual Disease–Guided Treatment Deintensification for Children With Acute Lymphoblastic Leukemia: Results From the Malaysia-Singapore Acute Lymphoblastic Leukemia 2003 Study

Allen Eng Juh Yeoh, Hasy Ariffin, Elaine Li Leng Chai, Cecilia Sze Nga Kwok, Yong Huak Chan, Kuperan Ponnudurai, Dario Campagna, Poh Lin Tan, Mei Yoke Chan, Shirley Kow Yin Khiam, See Ai Chong, Ah Moy Tan, Hai Peng Lin, and Thuan Chong Quah

ABSTRACT

Purpose
To improve treatment outcome for childhood acute lymphoblastic leukemia (ALL), we designed the Malaysia-Singapore ALL 2003 study with treatment stratification based on presenting clinical and genetic features and minimal residual disease (MRD) levels measured by polymerase chain reaction targeting a single antigen-receptor gene rearrangement.

Patients and Methods
Five hundred fifty-six patients received risk-adapted therapy with a modified Berlin-Frankfurt-Münster–ALL treatment. High-risk ALL was defined by MRD ≥ 1 × 10⁻⁸ at week 12 and/or poor prednisone response, BCR-ABL, MLL gene rearrangements, hypodiploid less than 45 chromosomes, or induction failure; standard-risk ALL was defined by MRD ≤ 1 × 10⁻⁸ at weeks 5 and 12 and no extramedullary involvement or high-risk features. Intermediate-risk ALL included all remaining patients.

Results
Patients who lacked high-risk presenting features (85.7%) received remission induction therapy with dexamethasone, vincristine, and asparaginase, without anthracyclines. Six-year event-free survival (EFS) was 80.6% ± 3.6%; overall survival was 88.4% ± 3.1%. Standard-risk patients (n = 172, 31%) received significantly deintensified subsequent therapy without compromising EFS (93.2% ± 4.1%). High-risk patients (n = 101; 18%) had the worst EFS (51.6% ± 10%); EFS was 83.6% ± 4.9% in intermediate-risk patients (n = 283, 51%).

Conclusion
Our results demonstrate significant progress over previous trials in the region. Three-drug remission-induction therapy combined with MRD-based risk stratification to identify poor responders is an effective strategy for childhood ALL.


INTRODUCTION

More than 80% of children diagnosed with acute lymphoblastic leukemia (ALL) in developed countries are now long-term survivors.1-3 This success can be attributed to a combination of factors, including increasingly accurate risk assignment strategies that reduce relapse caused by undertreatment and toxicities caused by overtreatment. However, cure rates for children with ALL treated outside the major US and European multicenter studies have lagged behind, particularly in developing countries.4

With contemporary chemotherapy, the prognostic strength of traditional clinical presenting features of ALL is diminishing, whereas established and newly discovered genetic and biologic factors are becoming increasingly more important.5-7 Early response to therapy is strongly associated with risk of relapse. Initial observations based on morphologic assessment of treatment response8 have been consolidated by numerous studies performed during the last two decades. Studies of treatment response measured by more sensitive and objective methods that can detect leukemia cells undetectable by morphology (ie, minimal residual disease [MRD]) have provided a rationale for the incorporation of MRD testing in risk assignment strategies.9-11 In patients with ALL, MRD can be monitored by flow cytometry12 or molecular methods; among the latter, the clinical usefulness of polymerase chain reaction