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1 Introduction 
   There are many known methods for the generation of random variates (Tadikamalla and Johnson, 
1978) from the gamma distribution with probability density function (pdf) 

  ( ) ( )1 / , 0, 0xf x x e xα α α− −= Γ > > . 
Johnson et al (1995) provide a good reference to different types of gamma generators. Some of the 
leading algorithms are based on the rejection method such as those proposed by Ahrens and Dieter 
(1974), Wallace (1974), Fishman (1976), Marsaglia (1977), Atkinson (1977), Cheng (1977) and 
Tadikamalla (1978). 
   Recently Kundu and Gupta (2003) considered an approximate method of generating gamma random 
variables by using the generalized exponential distribution. This method is shown to have a high 
degree of closeness for the gamma shape parameter α   in the range 1 2.5α< ≤ . Tadikamalla and 
Ramberg (1975) have also proposed an approximate method based on the Burr distribution. A 
drawback of these methods is that nonlinear equations have to be solved to apply them. In this paper 
an approximate method, based on acceptance-rejection sampling, is proposed to generate gamma 
random samples which obviate the need to solve nonlinear equations. The proposed method is general 
and may be applied to distributions other than the gamma distribution. 
   The paper is organized as follows. In section 2 we consider the acceptance-rejection method and the 
closeness of the target and envelope distributions as measured by the Kullback-Leibler discrepancy 
measure, Kolmogorov-Smirnov and Minimum Hellinger Distances. Section 3 proposes the 
approximation of samples by partial-rejection approximation method and compares this with an 
approximation by no-rejection. In section 4 the proposed approximate method is illustrated with the 
generation of gamma samples based upon Cheng’s (1977) gamma-log-logistic rejection algorithm. 
The last section gives the conclusion. 

 
2 Acceptance-rejection algorithm and closeness of envelope and target distributions  
   The acceptance-rejection method or the envelope rejection method uses a proxy distribution with 
pdf g(x) to achieve computer sampling from the target distribution f(x). Central to this method is the 
evaluation of the inequality  

u < f(x)/M g(x)         (2.1) 
where u is a random number  from the uniform distribution over (0, 1) denoted ~ (0,1)u U  and M is 
a constant. If (2.1) holds, the x generated from g(x) is accepted as a realization from f(x). We will call 
this the exact acceptance-rejection condition. If the ratio ( ) ( ) / ( )T x f x Mg x=  on the right-hand side 
of (2.1) is difficult or time consuming to evaluate, the ‘squeeze’ technique (see Devroye, 1986) is 
often used, that is, easy to compute bounds 1( )x and 2 ( )x are found such that  
   1 2( ) ( ) / ( ) ( )x f x Mg x x≤ ≤ .      (2.2) 
The acceptance-rejection algorithm is then as follows: 
Acceptance-Rejection Algorithm 

(1) Generate ~u U . 
(2) Generate x  from ).(xg  
(3) If 1 ( )u x<  go to (6). 
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(4) If 2 ( )u x> go to (1). 
(5) If  ( ) / ( )u f x Mg x>  go to (1). 
(6) Accept x . 

 
Remark. In step (3), the lower bound gives quick acceptance compared to the upper bound in step (4) 
which requires another check in step (5).  
   We now consider the closeness of the target and envelope distributions.  As an illustration, we shall 
measure the closeness of the log-logistic distribution to the gamma distribution.  
 
Kullback-Leibler discrepancy measure 
The upper bounds derived below assumes that ( ) ( )f x M g x≤ , 1≥M , has been determined for two 
nonnegative pdf’s ( )f x  and ( )g x . The Kullback-Leibler discrepancy measure between ( )f x  and 
( )xg  is given as 

( ) ( )( ) ( ) ( )( ) ( )
0

, ln /KL f x g x f x g x f x dx
∞

= ∫  

where M  is independent of x.  Then 

( ) ( )( ) ( ) ( )( ) ( )
0

, ln /KL f x g x f x g x f x dx
∞

= ∫ ( ) ( ) ( )
0

ln lnM f x dx M
∞

≤ =∫   (2.3)  

If M  is close to 1, then ln M will be very close to 0 implying that ( )f x  is very close to ( )g x .  
 

Kolmogorov-Smirnov Distance 
The Kolmogorov-Smirnov (K-S) distance measure between distribution functions ( )F x  and ( )G x is  

( ) ( )sup
x

D F x G x= −  

where ( ) ( )
( )

( )
1

0 0

expx xt t
F x dt f t dt

α

α

− −
= =

Γ∫ ∫  and ( )
( )

( )
1

2
0 0

x xt
G x dt g t dt

t

λ

λ

μλ

μ

−

= =
+

∫ ∫  

Since ( ) ( )
0

1
x

G x g t dt= ≤∫ we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

1 1
x x

F x G x f t g t dt M g t dt M− ≤ − ≤ − ≤ −∫ ∫ . 

Therefore, ( ) ( ) ( )sup 1
x

D F x G x M= − ≤ − .      (2.4) 

 
Minimum Hellinger distance 

This is defined as ( ) ( )( )2

0

HD f t g t dt
∞

= −∫ . It follows that 

( ) ( )( ) ( ) ( ) ( )2 2 2

0 0

1 1HD f t g t dt M g t dt M
∞ ∞

= − ≤ − = −∫ ∫   (2.5) 

   For the gamma pdf ( )f x  and log-logistic pdf ( )g x , with parameters as chosen in Cheng (1977), a 
numerical value for the upper bound may be obtained from the inequality. The upper bounds in (2.3), 
(2.4) and (2.5), with 1.13M ≈ , are 0.122, 0.13 and 0.003969 respectively. These values show the 
closeness of the gamma to the log-logistic distribution. This closeness leads us to consider the 
generation of a log-logistic sample, with parameters as determined in Cheng’s acceptance-rejection 
algorithm, without subjecting the generated variates to the exact acceptance-rejection condition (2.1) 
to approximate a gamma sample. However, the approximation, as judged by the K-S test, is found to 
be poor. This motivates us to propose a partial rejection method which is faster than the full rejection 
method of Cheng but provides a very good approximation to the gamma sample. This is discussed in 
the next section. 
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3 Generation of approximate gamma samples from log-logistic distribution 
 
3.1 Partial-Rejection Approximation Method 
   In the rejection method, an acceptance-rejection condition is used to decide whether a generated 
value from the envelope distribution is accepted as value for the target. It is well-known that the 
accepted values are, in theory, exactly from the target distribution. In general the execution of the 
acceptance-rejection condition is slow due the computations of the functions in it. In order to speed up 
the generation, we have considered two methods of generating approximate samples S: (a) Generate 
from the envelope distribution and accept all generated values as the target sample, that is, without 
subjecting the generated values to the exact acceptance-rejection condition; (b) Generate from the 
envelope distribution by replacing the exact acceptance-rejection condition with an easily computed 
acceptance-rejection condition based on an lower/upper bound or preliminary test. We call method (a) 
the no-rejection approximation method and method (b) the partial-rejection approximation method. 
Note that in both approaches, an approximate sample S will contain rejected values from the envelope 
distribution. If the acceptance-rejection algorithm is very efficient then the proportion of rejected 
values in the approximate sample obtained by method (a) will be very small. The proportion of 
rejected values in the approximate sample obtained by partial rejection (method (b)) will be very 
small if the bound or preliminary test for the acceptance-rejection condition is tight. This can be seen 
as follows. With reference to (2.2), using the upper bound 2 ( )x in the place of 

( ) ( ) / ( )T x f x Mg x= in the acceptance-rejection condition (2.1) will result in accepting rejected 

values of x that satisfy ( ) 2 ( )T u xx < < . Clearly, if 2 ( )x is tight, the proportion of rejected values 

that is accepted will be small. Note that the use of the lower bound 1( )x will mean accepting rejected 

values of x (those satisfy ( ) ( )1 T ux x << ) and also rejecting some values which should be accepted 

(those satisfying ( )1( )x u T x< < ). However this will be compensated by the increase in speed due to 

a much easily computed 1( )x . 
   Mathematically, the approximate sample S for methods (a) and (b) arises from a mixture of two 
distributions with pdf given by 

( ) ( ) ( ) ( )1 21 , 0 1g x pf x p f x p= + − < <     (3.1) 
where ( )1f x and ( )2f x  are the target and envelope pdf’s respectively. The fraction (1 )p−  in (3.1) 
may be viewed as the fraction of contamination of the target sample by the envelope distribution. The 
proportion p  is given by 1/ .p M=  If M is close to 1, the approximation is good. For 0.9,p >  we 
have1 1.1M≤ < while for 0.95p > ,1 1.05M≤ < . If an approximate sample is deemed to be good 
when the fraction of contamination in the target sample is at most 0.1, then Method (a) will not give a 
good approximate sample if 1.1.M >  
   The perceived merit of methods (a) and (b) is that it will be faster to generate samples by avoiding 
the exact acceptance-rejection test or modifying it with an easily computed bound.  We shall examine 
methods (a) and (b) and exemplify these methods with an established gamma acceptance-rejection 
algorithm. 
 
3.2 Generation of approximate gamma samples 
   The comparison of the no-rejection and partial-rejection approximation methods will be based on 
Cheng’s (1977) acceptance-rejection method for the gamma distribution with the log-logistic 
envelope. For the no-rejection method, with the parameters as determined in Cheng’s acceptance-
rejection algorithm, a sample S of log-logistic variates is generated without subjecting the variates to 
the test with the exact acceptance-rejection condition. Therefore, the sample S consists of gamma 
variates (accepted) and log-logistic variates (rejected).  This sample is taken to be approximately from 
the gamma distribution. A good approximate gamma sample results if the fraction (1 )p−  of rejected 
log-logistic variates is small (for example,1 0.1p− < ). As discussed in the previous section this is 
dependent upon the acceptance-rejection constant M. 
   The partial-rejection method (b) is a refinement of no-rejection method (a) where only a portion of 
these rejected log-logistic variates is retained to form the required sample. Clearly, it is desirable to 
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retain only those rejected log-logistic variates which do not deviate much from the target gamma 
distribution. One possible approach is to use a quickly computed lower/upper bound for M in the 
place of the harder to compute M, or a preliminary test as in Cheng’s gamma acceptance-rejection 
algorithm. We shall call this the screening inequality. Empirical studies show that if the bound is 
fairly tight only the rejected log-logistic variates that do not deviate much from the gamma 
distribution will be retained. 
   The K-S goodness-of-fit test is employed to determine if the approximate sample may reasonably be 
assumed to come from the gamma distribution. 
 
4 Bound and preliminary test for gamma partial-rejection approximation  
   The screening inequality for the partial-rejection approximation method (b) is determined from 
Cheng’s (1977, p. 73) gamma rejection algorithm (or Devroye, 1986, page 412): 
For a pair of independent uniform random variables 1U and 2U , the inequality to reject the log-
logistic random value X is given as 

2
1 2logb cV X U U+ − ≥        (4.1)  

where VX eα= , ( ){ }1 1log 1V a U U= − , ( ) 1 22 1a α −= − , log 4b α= − , 1c aα −= + , and α is the 
gamma shape parameter. Since log Z is a concave function of Z ,  

log 1 logZ Zθ θ− − ≥ .  
By letting 2

1 2Z U U= , it is found that log 1Zb cV X θθ − −+ − ≥ . This leads Cheng to propose a 
lower bound for the left-hand side of (4.1) given as  

2
1 24.5 log 4.5 1 logZ U Ub cV X − − ≥+ − ≥     (4.2) 

with 4.5θ = for all α because the actual value of θ is not critical. A preliminary test of acceptance of 
a generated log-logistic variate is conducted by using 4.5 log 4.5 1Zb cV X − −+ − ≥ . This avoids 
computing 2

1 2logU U most of the time and helps to speed up the algorithm. Based on empirical 
evidence, this inequality is rather tight. The partial-rejection method is implemented with this 
preliminary test only. 
   A Microsoft (MS) Fortran (version 5.0) program is written to generate the log-logistic samples and 
gamma samples. The routine RANDOM( ) provided by MS Fortran is used to generated the uniform 
[0, 1) random numbers. These samples were submitted to Kirkman’s (2006) online K-S two-sample 
test to obtain the p-values and K-S statistic D values. The K-S two-sample test program is developed 
with reference to the Numerical Recipes in Fortran 77 (1992) and was compiled using an Intel 
Fortran-for-Linux compiler.  
   The corresponding p-value and D for various (α, N) with 1000 replications are tabulated in Tables 1 
through 5. These tables present the results for the control values (Gamma), which are gamma samples 
generated by Cheng’s algorithm, Method (a) (No rejection) and Method (b) (Partial-rejection).  
   For the goodness-of-fit test, the null hypothesis is 0H : Sample comes from the gamma distribution 
and the alternate hypothesis aH : Samples is not from the gamma distribution. A large p-value means 
that the null hypothesis is very likely true. The very high p-values for the Gamma and Partial-rejection 
columns suggest that the partial-rejection sample may pass off as a gamma sample. 
 
 

 
Table 1: α=1.25 

N K-S Statistics Gamma Method (a) 
No rejection  

Method (b) 
Partial-rejection 

15 

Average P-value 0.6812 0.8062 0.9217 
S.D. of P-value 0.2592 0.2628 0.1268 

Average K-S Stat. 0.2440 0.1914 0.1568 
S.D. of K-S Stat. 0.0699 0.0929 0.0631 

25 
Average P-value 0.7506 0.5981 0.8192 
S.D. of P-value 0.2139 0.3098 0.1825 

Average K-S Stat. 0.1798 0.2075 0.1592 
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S.D. of K-S Stat. 0.0449 0.0733 0.0473 

40 

Average P-value 0.9242 0.4762 0.6690 
S.D. of P-value 0.1455 0.3129 0.2323 

Average K-S Stat. 0.1012 0.1905 0.1543 
S.D. of K-S Stat. 0.0340 0.0602 0.0384 

50 

Average P-value 0.9241 0.3409 0.5799 
S.D. of P-value 0.1415 0.3073 0.2519 

Average K-S Stat. 0.0914 0.1988 0.1519 
S.D. of K-S Stat. 0.0312 0.0595 0.0368 

 
 

Table 2: α=5.5 
N K-S Statistics Gamma Method (a) 

No rejection  
Method (b) 

Partial-rejection 

15 

Average P-value 0.7171 0.9294 0.9894 
S.D. of P-value 0.2310 0.1635 0.0467 

Average K-S Stat. 0.2349 0.1062 0.0664 
S.D. of K-S Stat. 0.0610 0.0961 0.0647 

25 

Average P-value 0.8292 0.8789 0.9873 
S.D. of P-value 0.1630 0.1999 0.0478 

Average K-S Stat. 0.1638 0.1176 0.0653 
S.D. of K-S Stat. 0.0349 0.0745 0.0470 

40 

Average P-value 0.9810 0.8309 0.9842 
S.D. of P-value 0.0620 0.2640 0.0615 

Average K-S Stat. 0.0786 0.1041 0.0645 
S.D. of K-S Stat. 0.0249 0.0643 0.0330 

50 

Average P-value 0.9722 0.7444 0.9781 
S.D. of P-value 0.0742 0.3096 0.0764 

Average K-S Stat. 0.0752 0.1138 0.0626 
S.D. of K-S Stat. 0.0243 0.0629 0.0305 

 
 

Table 3: α=10.25 
N K-S Statistics Gamma Method (a) 

No rejection  
Method (b) 

Partial-rejection 

15 

Average P-value 0.7203 0.9513 0.9883 
S.D. of P-value 0.2273 0.1325 0.0538 

Average K-S Stat. 0.2347 0.0914 0.0597 
S.D. of K-S Stat. 0.0596 0.0896 0.0659 

25 

Average P-value 0.8373 0.9220 0.9887 
S.D. of P-value 0.1514 0.1517 0.0501 

Average K-S Stat. 0.1618 0.0990 0.0600 
S.D. of K-S Stat. 0.0328 0.0693 0.0468 

40 

Average P-value 0.9860 0.8835 0.9844 
S.D. of P-value 0.0481 0.2132 0.0736 

Average K-S Stat. 0.0767 0.0868 0.0574 
S.D. of K-S Stat. 0.0232 0.0596 0.0343 

50 

Average P-value 0.9768 0.8154 0.9767 
S.D. of P-value 0.0650 0.2668 0.0874 

Average K-S Stat. 0.0736 0.0964 0.0579 
S.D. of K-S Stat. 0.0235 0.0588 0.0319 
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Table 4: α=15.5 

N K-S Statistics Gamma Method (a) 
No rejection  

Method (b) 
Partial-rejection 

15 

Average P-value 0.7158 0.9590 0.9865 
S.D. of P-value 0.2301 0.1180 0.0596 

Average K-S Stat. 0.2355 0.0847 0.0600 
S.D. of K-S Stat. 0.0599 0.0859 0.0665 

25 

Average P-value 0.8360 0.9377 0.9871 
S.D. of P-value 0.1548 0.1354 0.0570 

Average K-S Stat. 0.1618 0.0922 0.0607 
S.D. of K-S Stat. 0.0335 0.0664 0.0481 

40 

Average P-value 0.9862 0.9013 0.9810 
S.D. of P-value 0.0475 0.1986 0.0808 

Average K-S Stat. 0.0757 0.0793 0.0566 
S.D. of K-S Stat. 0.0233 0.0581 0.0363 

50 

Average P-value 0.9777 0.8479 0.9701 
S.D. of P-value 0.0664 0.2463 0.1025 

Average K-S Stat. 0.0735 0.0874 0.0577 
S.D. of K-S Stat. 0.0232 0.0572 0.0349 

 
 

Table 5: α=20.5 
N K-S Statistics Gamma Method (a) 

No rejection  
Method (b) 

Partial-rejection 

15 

Average P-value 0.7164 0.9632 0.9847 
S.D. of P-value 0.2293 0.1100 0.0638 

Average K-S Stat. 0.2360 0.0811 0.0605 
S.D. of K-S Stat. 0.0590 0.0837 0.0679 

25 

Average P-value 0.8366 0.9438 0.9850 
S.D. of P-value 0.1538 0.1271 0.0588 

Average K-S Stat. 0.1616 0.0888 0.0615 
S.D. of K-S Stat. 0.0334 0.0650 0.0493 

40 

Average P-value 0.9860 0.9151 0.9784 
S.D. of P-value 0.0487 0.1787 0.0862 

Average K-S Stat. 0.0756 0.0750 0.0559 
S.D. of K-S Stat. 0.0235 0.0559 0.0378 

50 

Average P-value 0.9754 0.8667 0.9641 
S.D. of P-value 0.0737 0.2278 0.1140 

Average K-S Stat. 0.0735 0.0829 0.0582 
S.D. of K-S Stat. 0.0242 0.0552 0.0371 

 
   The samples in the “no rejection” and “partial-rejection” columns are subjected to the test by (4.1) 
to determine the number of “accept” and “reject”. The numbers of “accept” and “reject” are presented 
in Tables 6 to 10. The last column of Tables 6 to 10 gives the overall percentage of the variates in the 
partial-rejection samples which should be rejected if the exact acceptance-rejection condition (4.1) is 
employed instead of the preliminary test. With 1000 replications for each N, the total number of 
variates equal 1000N for each combination of (α, N). This is given in bracket after the number of 
rejects for Method (b) in Table 6 only. The overall percentage of the rejected values in the 
approximate samples is seen to be less than 10 percent. 
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Table 6: α=1.25 

N 
Method (a) 

No rejection  
Method (b) 

Partial-rejection Percent of rejects 
Partial-rejection Accept Reject Accept Reject 

15 10777 4223 13614 1386 (15000) 9.24% 
25 17913 7087 22712 2288 (25000) 9.15% 
40 29254 10746 36666 3334 (40000) 8.34% 
50 35302 14698 44981 5019 (50000) 10.04% 

 
 

Table 7: α=5.5 

N 
Method (a) 

No rejection  
Method (b) 

Partial-rejection Percent of rejects 
Partial-rejection Accept Reject Accept Reject 

15 12832 2168 14073 927 6.18% 
25 21190 3810 23519 1481 5.92% 
40 34375 5625 37811 2189 5.47% 
50 42066 7934 46709 3291 6.58% 

 
 

Table 8: α=10.25 

N 
Method (a) 

No rejection  
Method (b) 

Partial-rejection Percent of rejects 
Partial-rejection Accept Reject Accept Reject 

15 13028 1972 14187 813 5.42% 
25 21521 3479 23720 1280 5.12% 
40 34911 5089 38092 1908 4.77% 
50 42757 7243 47109 2891 5.78% 

 
 

Table 9: α=15.5 

N 
Method (a) 

No rejection  
Method (b) 

Partial-rejection Percent of rejects 
Partial-rejection Accept Reject Accept Reject 

15 13107 1893 14234 766 5.11% 
25 21656 3344 23808 1192 4.77% 
40 35117 4883 38219 1781 4.45% 
50 43024 6976 47302 2698 5.40% 

 
 

Table 10: α=20.5 

N 
Method (a) 

No rejection  
Method (b) 

Partial-rejection Percent of rejects 
Partial-rejection Accept Reject Accept Reject 

15 13141 1859 14261 739 4.93% 
25 21714 3286 23860 1140 4.56% 
40 35216 4784 38298 1702 4.26% 
50 43145 6855 47412 2588 5.18% 

 
 
5 Concluding remarks 
   A partial-rejection approximation method is proposed to generate gamma random variables via 
Cheng’s rejection method. The high p-values obtained from the K-S test showed that the level of 
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closeness between the approximate samples and the gamma samples is very good. The р-value 
obtained is consistently high and it improves with α indicating its wide range of applicability (α>1). 
The partial-rejection approximation method (Method (b)) has been compared to the no-rejection 
approximation method (Method (a)) where all the variates generated from the envelope distribution 
are not subjected to the acceptance-rejection condition. The no-rejection approximation method will 
give good approximate samples if the acceptance-rejection constant M is very close to 1 which is 
difficult to achieve in practice. 
   Clearly, the partial-rejection approximation method inherits the merits of the acceptance-rejection 
method with the additional advantage of speed. As remarked in the Introduction, the proposed method 
is general and may be applied, for instance, to generate negative binomial samples based on the 
acceptance-rejection algorithm of Ong and Lee (2008). 
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